2206(a)

THE UNIVERSITY OF SYDNEY

<u>CHEMISTRY 1B - CHEM1102</u> FIRST SEMESTER EXAMINATION

CONFIDENTIAL

JUNE 2013

TIME ALLOWED: THREE HOURS

GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY NAME	SID NUMBER	
OTHER NAMES	TABLE NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 22 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new question of the short answer section begins with a •.
- Only non-programmable, Universityapproved calculators may be used.
- Students are warned that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Page 24 is for rough working only.

OFFICIAL USE ONLY

Multiple choice section Marks

Pages	Max	Gained
2-10	28	

Short answer section

Short answer section					
	Marks				
Page	Max	Gained		Marker	
11	8				
12	4				
13	4				
14	6				
15	2				
16	7				
17	6				
18	9				
19	3				
20	7				
21	5				
22	5				
23	6				
Total	72				
Check	Total				

• Use the information already provided to complete the following table. (ox = oxalate = $C_2O_4^{2^-}$)				
Formula	$\left[CrCl_2(NH_3)_4\right]^n$	[Fe(ox) ₃] ⁿ	$[ZnCl_2(NH_3)_2]^n$	_
Oxidation state of transition metal ion		+III		
Number of <i>d</i> -electrons in the transition metal ion			10	
Number of unpaired <i>d</i> -electrons in the transition metal ion				
Charge of complex (<i>i.e.</i> n)	1+			
Is the metal atom paramagnetic?				

The complex $[PtCl_2(NH_3)_2]$ has two isomers, while its zinc analogue (in the table) exists in only one form. Using diagrams where appropriate, explain why this is so.

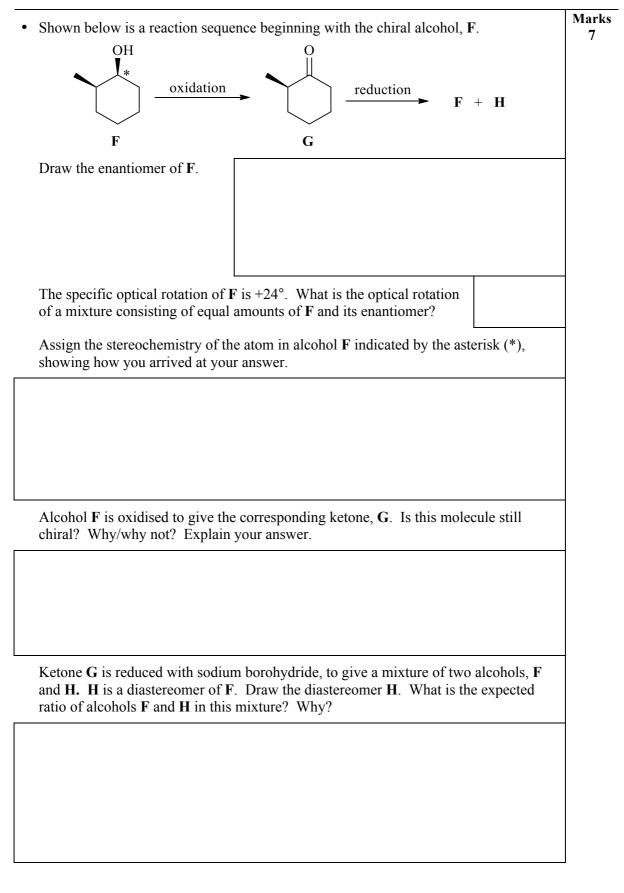
•	What is the pH of a 0.1 M solution of amount is 1.8×10^{-5} .	monium chloride, given the <i>K</i> _b for ammonia	Marks 4
		pH =	-
	What is the ratio of ammonia to ammoniu	im ion in this solution?	-
		Answer:	

HEM1102	2013-J-4	June 2013	
Describe the periodic trends exhibit principal quantum number, <i>n</i> , and			s of Marks 2
Giving reasons, order either the se increasing acidity.	et of oxyacids c	or the binary acids in terms of	2
HClO, HClO ₂ , HClO ₃ , HClO	4 or	H_2O , H_2S , H_2Se , H_2Te	

What is the pH of a solution which is 0.10 M in both acetic acid and sodium acetate? The K_a for acetic acid is 1.8×10^{-5} .	Marks 4
Answer:	_
What is the final pH if 0.010 mol of HCl is added to 1.0 L of the above solution?	_
Answer:	
The K_{sp} for Fe(OH) ₃ is 2.64×10^{-39} . What is its molar solubility in water?	2
Answer:	

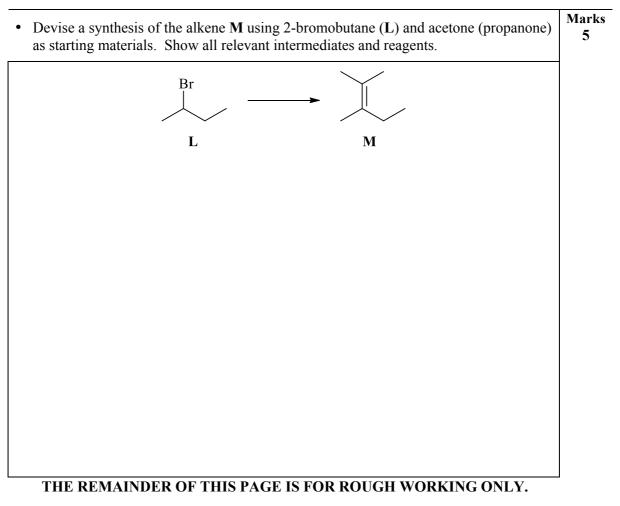
The unit cell below has a cation (M) at the centre of the cell and anions (X) at the corners.
 Marks 2
 Marks 2
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M
 M

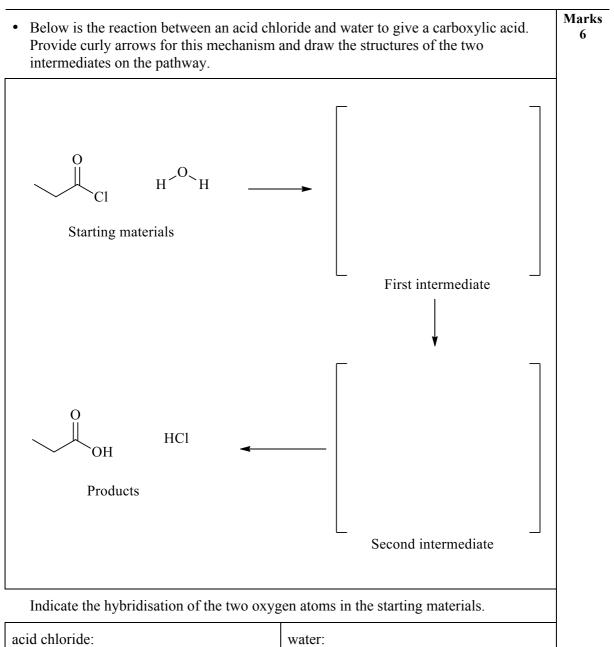
THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.

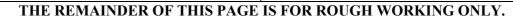

A phase diagram	n of water is shown below.	Ma
1 C	B C (3 1 2 3 A (0.01 °C, 0.00603 att	374 °C, 218 atm)
	Temperature	
Identify the four	phases shown as 1-4 in the phase diagram.	
1:	2:	
3:	4:	
What are the pha	ase changes highlighted by the forward and	reverse arrows called?
Forward:	Reverse:	
What names are	given to the points A and C?	
A:	C:	
The boundary lir biological signifi	ne A-B is slightly tilted to the left. What ar icances of this?	e the physical and
What are the phy	ysical characteristics of water in phase 4?	

10110 W	ing reaction: NO(g	$g) + NO_2(g) + O_2(g)$	g) \rightarrow N ₂ O ₅ (g)		
Run	[NO(g)] / M	[NO ₂ (g)] / M	$[O_2(g)] / M$	Rate / M s ⁻¹	_
1	0.10	0.10	0.10	2.1×10^{-2}	
2	0.20	0.10	0.10	4.2×10^{-2}	
3	0.20	0.30	0.20	1.26×10^{-1}	
4	0.10	0.10	0.20	2.1×10^{-2}	
• The ra	te constant for a rea . What is the activa	ction is 5.0×10^{-3} s ⁻ tion energy of the re	k = ⁻¹ at 215 °C and 1.2 > eaction in kJ mol ⁻¹ ?	$\times 10^{-1} \text{ s}^{-1} \text{ at}$	3
Rate = • The ra 452 °C	te constant for a rea . What is the activa	ction is 5.0×10^{-3} s ⁻ tion energy of the re	-1 at 215 °C and 1.2 >	$\times 10^{-1} \text{ s}^{-1} \text{ at}$	3
• The ra	te constant for a rea . What is the activa	tion energy of the re	-1 at 215 °C and 1.2 >	$\times 10^{-1} \text{ s}^{-1} \text{ at}$	3
• The ra 452 °C	. What is the activa	tion energy of the re	¹ at 215 °C and 1.2 × caction in kJ mol ⁻¹ ?	$\times 10^{-1} \text{ s}^{-1} \text{ at}$	3
• The ra 452 °C	. What is the activa	tion energy of the re Ans	¹ at 215 °C and 1.2 × caction in kJ mol ⁻¹ ?	$\times 10^{-1} \text{ s}^{-1} \text{ at}$	3

Complete the following table.				
STARTING MATERIAL	REAGENTS/ CONDITIONS	CONSTITUTIONAL FORMULA(S) OF MAJOR ORGANIC PRODUCT(S)		
ОН				
	dilute H ₂ SO ₄			
Br	hot conc. KOH in ethanol solvent			
ОН		O Cl		
	H ₂ , Pd/C			
MgBr	1. CO ₂ 2. H [⊕] /H ₂ O			
		$ \begin{array}{c} H \\ H \\ N \\ O \\ + CH_3OH \end{array} $		
	$\mathrm{OH}^{\Theta}/\mathrm{H_2O}$ / heat			


• When alkene A is reacted with HBr, the major reaction product is B. However, a minor product, C, is also formed that is isomeric with B. $\begin{array}{c}
\downarrow \\ \downarrow \\ A \end{array} \qquad \begin{array}{c}
HBr \\ \downarrow \\ \downarrow \\ B \end{array} \qquad \begin{array}{c}
HBr \\ \downarrow \\ HBr \\ \hline \\ B \end{array} \qquad \begin{array}{c}
HBr \\ \downarrow \\ H \end{array} \qquad \begin{array}{c}
HBr \\ H \end{array} \qquad \begin{array}{c}
HBr \\ \downarrow \\ H \end{array} \qquad \begin{array}{c}
HBr \\ H$


THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY.



CHEM1102	2013-J-12	June 2013
• Below is the structure of	an ether, J .	Marks 5
	✓_0 ✓ 1	
Draw a constitutional iso	mer of J .	
Draw a conformational is	romer of I	
There are no configuration	nal isomers of J . Why not?	
Below is the structure of	an alkene, K , which <i>does</i> have a c	configurational isomer.
	K	
Draw this configurationa	I Isomer.	

Name \mathbf{K} , making sure your name distinguishes \mathbf{K} from its isomer.

DATA SHEET

 $Physical \ constants$ Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \ {\rm mol}^{-1}$ Faraday constant, $F = 96485 \ {\rm C} \ {\rm mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \ {\rm J} \ {\rm s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \ {\rm m} \ {\rm s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \ {\rm J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \ {\rm J} \ {\rm K}^{-1}$ Permittivity of a vacuum, $\epsilon_0 = 8.854 \times 10^{-12} \ {\rm C}^2 \ {\rm J}^{-1} \ {\rm m}^{-1}$ Gas constant, $R = 8.314 \ {\rm J} \ {\rm K}^{-1} \ {\rm mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \ {\rm C}$ Mass of electron, $m_{\rm e} = 9.1094 \times 10^{-31} \ {\rm kg}$ Mass of proton, $m_{\rm p} = 1.6726 \times 10^{-27} \ {\rm kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors1 atm = 760 mmHg = 101.3 kPa = 1.013 bar1 Ci = 3.70×10^{10} Bq0 °C = 273 K1 Hz = $1 s^{-1}$ 1 L = 10^{-3} m³1 tonne = 10^3 kg1 Å = 10^{-10} m1 W = $1 J s^{-1}$ 1 eV = $1.602 \times 10^{-19} J$

Decimal fractions		Decin	Decimal multiples		
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol
10^{-3}	milli	m	10^{3}	kilo	k
10^{-6}	micro	μ	10^{6}	mega	Μ
10^{-9}	nano	n	10 ⁹	giga	G
10^{-12}	pico	р	10^{12}	tera	Т

CHEM1102 - CHEMISTRY 1B

Useful formulas

Quantum Chemistry	Electrochemistry
$E = hv = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$
$\lambda = h/mv$	Moles of $e^- = It/F$
$E = -Z^2 E_{\rm R}(1/n^2)$	$E = E^{\circ} - (RT/nF) \times \ln Q$
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$E^{\circ} = (RT/nF) \times \ln K$
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$E = E^{\circ} - \frac{0.0592}{m} \log Q \text{ (at 25 °C)}$
$T\lambda = 2.898 \times 10^6 \text{ K nm}$	n n n n n n n n n n n n n n n n n n n
Acids and Bases	Gas Laws
$pH = -log[H^+]$	PV = nRT
$pK_{\rm w} = pH + pOH = 14.00$	$(P+n^2a/V^2)(V-nb) = nRT$
$pK_w = pK_a + pK_b = 14.00$	$E_{\rm k} = \frac{1}{2}mv^2$
$pH = pK_a + \log \{ [A^-] / [HA] \}$	
Radioactivity	Kinetics
$t_{\frac{1}{2}} = \ln 2/\lambda$	$t_{\frac{1}{2}} = \ln 2/k$
$A = \lambda N$	$k = A e^{-Ea/RT}$
$\ln(N_0/N_t) = \lambda t$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_0 - kt$
14 C age = 8033 ln(A_0/A_t) years	$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$
Colligative Properties & Solutions	Thermodynamics & Equilibrium
$\Pi = cRT$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$\Delta G = \Delta G^{\circ} + RT \ln Q$
c = kp	$\Delta G^{\circ} = -RT \ln K$
$\Delta T_{\rm f} = K_{\rm f} m$	$\Delta_{\rm univ}S^{\rm o} = R \ln K$
$\Delta T_{\rm b} = K_{\rm b} m$	$K_{\rm p} = K_{\rm c} \left(\frac{RT}{100}\right)^{\Delta n}$
Miscellaneous	Mathematics
$A = -\log \frac{I}{I_0}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
$A = \varepsilon c l$	$\ln x = 2.303 \log x$
$E = -A \frac{e^2}{4\pi\varepsilon_o r} N_A$	Area of circle = πr^2
$4\pi\varepsilon_0 r^{1/A}$	Surface area of sphere = $4\pi r^2$

June	2013	
------	------	--

Standard Reduction Potentials, E°	
Reaction	E° / V
$\operatorname{Co}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Co}^{2+}(\operatorname{aq})$	+1.82
$Ce^{4+}(aq) + e^{-} \rightarrow Ce^{3+}(aq)$	+1.72
$MnO_4^{-}(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O$	+1.51
$\operatorname{Au}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Au}(s)$	+1.50
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Pt^{2+}(aq) + 2e^- \rightarrow Pt(s)$	+1.18
$MnO_2(s) + 4H^+(aq) + e^- \rightarrow Mn^{3+} + 2H_2O$	+0.96
$NO_3^-(aq) + 4H^+(aq) + 3e^- \rightarrow NO(g) + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$NO_{3}^{-}(aq) + 10H^{+}(aq) + 8e^{-} \rightarrow NH_{4}^{+}(aq) + 3H_{2}O$	+0.88
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$\operatorname{Fe}^{3+}(\operatorname{aq}) + e^{-} \rightarrow \operatorname{Fe}^{2+}(\operatorname{aq})$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.34
$\operatorname{BiO}^{+}(\operatorname{aq}) + 2\operatorname{H}^{+}(\operatorname{aq}) + 3\operatorname{e}^{-} \rightarrow \operatorname{Bi}(\operatorname{s}) + \operatorname{H}_{2}\operatorname{O}$	+0.32
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	0 (by definition)
$2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g)$ Fe ³⁺ (aq) + 3e ⁻ \rightarrow Fe(s)	0 (by definition) -0.04
$Fe^{3+}(aq) + 3e^- \rightarrow Fe(s)$	-0.04
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.04 -0.126
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$	0.04 0.126 0.136
$Fe^{3^{+}}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2^{+}}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2^{+}}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2^{+}}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.04 -0.126 -0.136 -0.24
$Fe^{3^{+}}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2^{+}}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2^{+}}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2^{+}}(aq) + 2e^{-} \rightarrow Ni(s)$ $Co^{2^{+}}(aq) + 2e^{-} \rightarrow Co(s)$	0.04 0.126 0.136 0.24 0.28
$Fe^{3^{+}}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2^{+}}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2^{+}}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2^{+}}(aq) + 2e^{-} \rightarrow Ni(s)$ $Co^{2^{+}}(aq) + 2e^{-} \rightarrow Co(s)$ $Cd^{2^{+}}(aq) + 2e^{-} \rightarrow Cd(s)$	0.04 0.126 0.136 0.24 0.28 0.40
$Fe^{3^{+}}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2^{+}}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2^{+}}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2^{+}}(aq) + 2e^{-} \rightarrow Ni(s)$ $Co^{2^{+}}(aq) + 2e^{-} \rightarrow Co(s)$ $Cd^{2^{+}}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2^{+}}(aq) + 2e^{-} \rightarrow Fe(s)$	0.04 0.126 0.136 0.24 0.28 0.40 0.44
$Fe^{3^{+}}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2^{+}}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2^{+}}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2^{+}}(aq) + 2e^{-} \rightarrow Ni(s)$ $Co^{2^{+}}(aq) + 2e^{-} \rightarrow Co(s)$ $Cd^{2^{+}}(aq) + 2e^{-} \rightarrow Fe(s)$ $Fe^{2^{+}}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3^{+}}(aq) + 3e^{-} \rightarrow Cr(s)$	-0.04 -0.126 -0.136 -0.24 -0.28 -0.40 -0.44 -0.74
$Fe^{3^{+}}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2^{+}}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2^{+}}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2^{+}}(aq) + 2e^{-} \rightarrow Ni(s)$ $Co^{2^{+}}(aq) + 2e^{-} \rightarrow Co(s)$ $Cd^{2^{+}}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2^{+}}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3^{+}}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2^{+}}(aq) + 2e^{-} \rightarrow Zn(s)$	0.04 0.126 0.136 0.24 0.28 0.40 0.44 0.74 0.76
$Fe^{3^{+}}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2^{+}}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2^{+}}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2^{+}}(aq) + 2e^{-} \rightarrow Ni(s)$ $Co^{2^{+}}(aq) + 2e^{-} \rightarrow Co(s)$ $Cd^{2^{+}}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2^{+}}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3^{+}}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2^{+}}(aq) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$	0.04 0.126 0.136 0.24 0.28 0.40 0.44 0.74 0.76 0.83
$Fe^{3^{+}}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2^{+}}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2^{+}}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2^{+}}(aq) + 2e^{-} \rightarrow Ni(s)$ $Co^{2^{+}}(aq) + 2e^{-} \rightarrow Co(s)$ $Cd^{2^{+}}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2^{+}}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3^{+}}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2^{+}}(aq) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2^{+}}(aq) + 2e^{-} \rightarrow Cr(s)$	-0.04 -0.126 -0.136 -0.24 -0.28 -0.40 -0.44 -0.74 -0.74 -0.76 -0.83 -0.89
$Fe^{3^{+}}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2^{+}}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2^{+}}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2^{+}}(aq) + 2e^{-} \rightarrow Ni(s)$ $Co^{2^{+}}(aq) + 2e^{-} \rightarrow Co(s)$ $Cd^{2^{+}}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2^{+}}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3^{+}}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2^{+}}(aq) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2^{+}}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3^{+}}(aq) + 3e^{-} \rightarrow Al(s)$	0.04 0.126 0.136 0.24 0.28 0.40 0.44 0.74 0.74 0.76 0.83 0.89 1.68
$Fe^{3^{+}}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2^{+}}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2^{+}}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2^{+}}(aq) + 2e^{-} \rightarrow Ni(s)$ $Co^{2^{+}}(aq) + 2e^{-} \rightarrow Co(s)$ $Cd^{2^{+}}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2^{+}}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3^{+}}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2^{+}}(aq) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2^{+}}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3^{+}}(aq) + 3e^{-} \rightarrow Al(s)$ $Sc^{3^{+}}(aq) + 3e^{-} \rightarrow Sc(s)$	0.04 0.126 0.136 0.24 0.28 0.40 0.44 0.74 0.76 0.83 0.89 1.68 2.09
$Fe^{3^{+}}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2^{+}}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2^{+}}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2^{+}}(aq) + 2e^{-} \rightarrow Ni(s)$ $Co^{2^{+}}(aq) + 2e^{-} \rightarrow Co(s)$ $Cd^{2^{+}}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2^{+}}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3^{+}}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2^{+}}(aq) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2^{+}}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3^{+}}(aq) + 3e^{-} \rightarrow Sc(s)$ $Mg^{2^{+}}(aq) + 2e^{-} \rightarrow Mg(s)$	$\begin{array}{r} -0.04 \\ -0.126 \\ -0.136 \\ -0.24 \\ -0.28 \\ -0.40 \\ -0.44 \\ -0.74 \\ -0.76 \\ -0.83 \\ -0.89 \\ -1.68 \\ -2.09 \\ -2.36 \end{array}$
$Fe^{3^{+}}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2^{+}}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2^{+}}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2^{+}}(aq) + 2e^{-} \rightarrow Ni(s)$ $Co^{2^{+}}(aq) + 2e^{-} \rightarrow Co(s)$ $Cd^{2^{+}}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2^{+}}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3^{+}}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2^{+}}(aq) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2^{+}}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3^{+}}(aq) + 3e^{-} \rightarrow Sc(s)$ $Mg^{2^{+}}(aq) + 2e^{-} \rightarrow Mg(s)$ $Na^{+}(aq) + e^{-} \rightarrow Na(s)$	$\begin{array}{r} -0.04 \\ -0.126 \\ -0.136 \\ -0.24 \\ -0.28 \\ -0.40 \\ -0.44 \\ -0.74 \\ -0.76 \\ -0.83 \\ -0.89 \\ -1.68 \\ -2.09 \\ -2.36 \\ -2.71 \end{array}$

LANTHANOID S ACTINOIDS	1 порвостях Н 1.008 1.0	1
ID LANTIANUM La 138.91 3 Астичим 5 Астичим Ас (227.0)	4 12 12 12 12 12 12 12 12 12 12	2
58 CERINA 1 140.12 90 1 132.04	21 sc. Suter Sc. 44.96 39 vrinetow 88.91 57-71 57-71 88.91 88.91 57-71	ω
	22 TITANUM TANINA TITANUM TITANU TITANU TITANUM TITANUM TITANU TITANUM TITANU T	4
59 Реалборунем Рг 140.91 91 реоглестичим Ра [231.0]	23 vaxvousi vaxvousi vaxvousi vavvousi	J
60 NEODYNIUM Nd 144.24 92 имлем U 238.03	24 Спомия Сг 52.00 95.94 74 тихетем 95.94 74 тихетем W 183.85 106 яв.амовелия Sg [271]	6
61 Ртометнием Рт [144.9] 93 мертимим Np [237.0]	25 MANGA288	۲
62 sмилиим Sm 150,4 94 Ри Ри [239,1]	26 190.2 101.07 26 55.85 55.85 101.07 76 05 190.2 108 Instruction 102.2 108 Instruction 103.2 108 Instruction Instruc	œ
63 Ешорим Ец 151.96 95 Аменсим Ат [243.1]		9
64 Gd 157.25 96 ссилим Сти		10
м 158.93 5 158.93 97 векселлю Вк 1247.1	29 correr Cu 63.55 47 sure Au 196.97 [281]	11
	30 200 200 200 200 200 200 200 200 200 2	12
66 рублович Dy 162.50 98 слиговачим Cf	5 B B B B B 10.81 13 ALIANING A A A A A A A A A A A A A	13
67 нютяним Но 164.93 99 енястемим Ез [252.1]	6 сливом С 12.01 14 14 мысом Si 28.09 72.59 50 тв 28.09 72.59 50 тв 82 ино С С С С С С С С С С С С С С С С С С С	14
68 изынам Ег 167.26 100 изазылам Fm [257.1]	7 STITINOGEN N 14.01 14.01 14.01 14.01 14.01 14.01 14.01 14.01 14.01 14.01 14.01 14.01 14.01 14.01 15 P 30.97 33 ARSNIC AS 74.92 51 ASTANOVY SD 121.75 83 BSNITH 208.98	15
69 типлем Тт 168.93 101 Ивзендечим М d [256.1]	8 0 0 0 0 0 0 0 16.00 16.00 16.00 16 32.07 32.07 32.07 32.07 32.07 32.07 32.07 32.07 32.07 16.00 10.00 1	16
70 YTERMUN Yb 173.04 173.04 102 NOBLIDY NO [259.1]	9 FLIGRAGE 19.00 19.00 17 19.00 17 17 17 17 17 17 17 17 17 17	17
71 Lutefiem Lu 174.97 103 LAWRENCIEM LT [260.1]	2 He 4.003 10 Ne 20.18 10 Ne 20.18 10 Ne 20.18 18 Me 39.95 36 Ne 83.80 Kr K	18

PERIODIC TABLE OF THE ELEMENTS

CHEM1102 - CHEMISTRY 1B

(q)9077